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The problem of finding a relaxation time spectrum best fitting dynamic moduli data in the least-
squares sense is shown to be well-posed and to yield a discrete spectrum, provided the data cannot
be fitted exactly, i.e., without any deviation of data and calculated values. Properties of the resulting
spectrum are discussed. Examples of discrete spectra obtained from simulated literature data and ex-
perimental literature data on polymers are given. The problem of smoothing discrete spectra when
continuous ones are expected is discussed. A detailed study of an integral transform inversion under
the non-negativity constraint is given in Appendix.

During last decades, relaxation phenomena have attracted an increasing interest in
polymer chemistry and physics. To study the relaxation behaviour of polymers, mech-
anical properties have been used frequently. Among mechanical data, those of dynamic
moduli seem most suitable for this study. To obtain a relaxation time spectrum H(τ)
from dynamic moduli data, the following equations1 should be solved

G′(ω) = ∫ 
0

∞
H(τ)

τ  
ω2τ2

1 + ω2τ2 dτ (1a)

G′′(ω) = ∫ 
0

∞
H(τ)

τ  
ωτ

1 + ω2τ2 dτ  , (1b)

where G′  is the storage modulus, G″ the loss modulus, ω the experimental frequency,
and τ the relaxation time. The solution H(τ) should be non-negative over the whole
integration interval (the so called non-negativity constraint). Sometimes, a complex
modulus G* is introduced and Eqs (1a) and (1b) then read
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G∗ (ω) = G′(ω) + iG′′(ω) = iω ∫ 
0

∞
H(τ)

1 + iωτ dτ  , (2)

where i is the imaginary unit. The integral kernel in Eq. (1a) is Lorentz function in the
variable 1/ω (and also in 1/τ) and the kernel in Eq. (1b) is the dispersion component of
Lorentz function. Therefore, I call either of the integral transformations (1) and (2)
Lorentz transformation.

Gross2 gave a simple form of solutions H(τ) of Eqs (1) when either the storage mo-
dulus G′(ω) or the loss modulus G″(ω) is given by a function of ω, analytical in terms
of the theory of the functions of the complex variable. However, serious difficulties are
met in using his result: the experimental G′  and G″  values are available in a tabular
form and their conversion to empirical functions may lead to negative values and/or an
improper marginal behaviour of H(τ).

The standard method of treating experimental data is the least-squares method. How-
ever, solving Eqs (1) involves an integral transform inversion which is known to be
ill-posed (ill-conditioned). Tikhonov3 developed a regularization method to treat this
difficulty and his method was used for analysis of dynamic moduli data4,5. An elaborated
computer program for such an analysis named CONTIN was developed by Provencher6,7

and has been widely used in analyses of dynamic light scattering (DLS) data. A more
thorough testing of CONTIN program as used to the Laplace transform inversion8

showed it to be sensitive to a proper choice of the regularizor. Moreover, it turned out
that singularities (δ-functions, i.e., discrete modes, or edges of histogram bins) dis-
turbed the result, producing splitting of wide bands, and that CONTIN had a pro-
nounced tendency to replace asymmetric smooth bands by symmetric ones with
shoulders or side bands on the slower decrease side.

Baumgaertel and Winter9 sought a relaxation time spectrum in the discrete form

G′(ωi) = ∑ 
j=1

r

gj 
ωi

2τ j
2

1 + ωi
2τ j

2 (3a)

G′′(ωi) = ∑ 
j=1

r

gj 
ωiτ j

1 + ωi
2τ j

2 (3b)

using a small number r of distinct relaxation modes τ j with positive relaxation strengths
gj as a compromise between a good fit of data and an ill-posedness. The problem of a
discrete representation of an inverted integral transform under the non-negativity con-
straint was studied extensively in a related problem of Laplace transform. It was
shown10,11 that there exists a best least-squares solution with a finite number of modes,
which is unique when it does not fit the transform data exactly (i.e., without any devi-
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ation of data and calculated values). I will call this solution a complete discrete spec-
trum (CDS). This solution was shown to be better in the least-squares sense than any
continuous solution and any mixed discrete-continuous solution12. Later on, the result
that the least-squares solution to an integral transform inversion is of a discrete form
with a finite number of modes, unless data are fitted exactly, was generalized for a wide
class of integral kernels to which Lorentz kernel of Eqs (1) belongs (see Appendix in
ref.13); this class is further extended in the present paper (see Appendix, Theorem 5).
CDSs for simulated, with a noise added, Laplace transforms of model continuous relax-
ation spectra12 showed relaxation modes more or less regularly spaced and their en-
velopes in a rough agreement with the model spectra. Spacing was usually about a half
decade and the actual positions of the modes depended on the actual form of the noise
added. This is in line with the finding14 that some of experimental data pursued in ref.9 are
compatible with continuous relaxation time spectra as well. It may be sometimes diffi-
cult to decide whether two or three close discrete modes are necessarily individuals or
their envelope may represent a continuous spectrum compatible with the data as well.

The subject of this paper is to discuss some aspects of discrete relaxation time spec-
tra in more detail, including the posedness of the problem of finding the best least-
squares spectrum, and to show examples of these spectra obtained from literature
dynamic moduli data5,15. Since the problem of inverting an integral transform under the
non-negativity constraint is frequently met in polymer chemistry and physics, its de-
tailed treatment is given in Appendix.

THEORETICAL

In Appendix, an exact representation of a set of n pairs of dynamic moduli data at
distinct frequencies ωi (2n items total) by a discrete spectrum, (3a) and (3b), of r modes
with distinct relaxation times τj and positive amplitudes gj, when the feasible τ set is a
single closed interval, is shown to be unique if and only if r + s < 2n, where s is the
number of τ j’s inside the feasible τ interval. Further, it is shown that the least-squares
solution of a discrete spectrum (CDS) for a data set not representable exactly is unique
with r + s < 2n and that the problem of its finding is well-posed from a mathematical
point of view (according to ref.3, p. 16). A bit more complicated result is obtained when
the feasible τ set consists of several closed intervals and/or contains isolated τ point(s)
(see Appendix, Theorem 4). The mathematical well-posedness established seems op-
timistic; however, when the actual relaxation time spectrum is continuous, uncertainties
in peak positions produced by data errors are comparable to peak spacing. Then, the
fact that the τ j positions are adjusted is not essential and their values are of no use for
a practician. In the Laplace transform inversion, a grid equidistant in log τ was used
instead by Pike and Ostrowsky16; a subjective choice of the grid origin was avoided by
shifting the grid by a fraction of the spacing interval several times and taking the aver-
age of the results obtained. A proper selection of grid spacing is critical: if too dense,
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an artifact structure may be obtained in the result, if not dense enough, the data fit may
be bad. Spacing comparable to that in CDS can be recommended. However, when an
isolated very narrow band or a discrete mode appears in the actual spectrum together
with a broad band in another τ region, it may happen that no suitable spacing exists:
either the very narrow band gets too broad or the broad band acquires an artifact struc-
ture. The adjusted τj positions are of practical use when the actual spectrum is discrete
with spacing less dense than spacing typical of CDS of continuous distribution data
with the noise level equal to that in the actual data. Even in this case, a spectrum
consisting of narrow continuous bands, spread over the estimated uncertainties of the τ j

positions, may be compatible with the actual data as well.
A serious consequence of the well-posedness of a problem is that a stable algorithm

for solving it exists. My long-time experience with obtaining CDS in the Laplace trans-
form inversion showed that the double precision (16 significant digits) was sufficient in
all cases with a single practically irrelevant exception12 of data simulated with the noise
level of 10–6. The fact that stability worsens when approaching data which can be fitted
exactly is not surprising since the region of ill-posedness is approached at that. Another
convergence worsening was observed when accidental close doublets in CDS were
found.

CDS is suitable for testing the consistency of data since no spectrum with a better
agreement with the data (in the least-squares sense) exists. When CDS residuals (the
deviations from data values) are nonrandom, it follows that either the data are subject
to some systematic errors or the experiment follows Eqs (1) (e.g., due to a nonlinearity
of the viscoelastic behaviour) with the only accuracy comparable to the systematic
deviations revealed. In both cases the statistical tests discussed below may become
unreliable.

CDS is also suitable as a reference in considering whether another relaxation time
spectrum (e.g. a continuous spectrum) is still compatible with data. CONTIN uses the
Fisher test for this purpose and calls it Probability 1 to Reject6. This test works well in
many cases; however, being global, sometimes it allows deviations in a τ region greater
than statistically acceptable on account of lower deviations in other τ regions. An alter-
native, Probability 2 to Reject6, justifies a full compatibility with data, but usually
leaves much of the result unsmoothed. In using CDS as a reference, two degrees of
freedom should be counted for every mode with a freely adjustable τ j and one degree
for that with a τ j fixed in the boundary of the feasible τ set (e.g. at zero or infinity). In
the Fisher test, the discrete spectrum with lowest standard deviation may be more suit-
able for a reference than CDS, since the standard deviation, serious for this test, seems
better estimated with the former spectrum than with CDS. However, no such simple
method of recognizing the former spectrum seems to exist as exists10 for CDS. The
former spectrum may contain one or a few modes less than CDS (especially when CDS
contains a mode with a very low relaxation strength or a doublet of close relaxation
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modes) and/or may differ from CDS by fixing a relaxation time τ j at a close τ in the
boundary of the feasible τ set (e.g. zero or infinity). When the Fisher test seems insuf-
ficient, an inspection of residuals may be used. A way of quantifying such an approach
is to smooth data to some “best” values representable by Eqs (3) and on statistical
grounds to estimate limits in which each of the “best” values may vary. The maximum
of the ratio of the deviation of the calculated value from the “best” value to the allowed
variation from the “best” value is a measure of the compatibility of a spectrum with
data; when it does not exceed unity, the spectrum is surely compatible with data pro-
vided the above limits (spanning the so called confidence intervals17) are estimated
correctly. I will call such an approach an IR test and the above measure of the compati-
bility an IR (inconfidence ratio) value.

In using CDS or another good discrete representation of a continuous spectrum to
calculate further properties, correct results may be expected only when this calculation
spreads the spectrum at least as much as Lorentz transformation does. Hence, relaxation
modulus9 G(t), creep compliance9 J(t), and dynamic compliances J′(ω) and J″(ω) ob-
tained in this way may be expected to be correct within the level of experimental errors
in the dynamic moduli G′(ω) and G″(ω), whereas retardation spectrum9 L(τ) obtained in
this way may be continuous as well. An example of a similar approach in correcting
GPC chromatograms for longitudinal spreading may be found in ref.18.

For finding discrete relaxation time spectra with a given number of modes best in the
least-squares sense, including CDS, I wrote a computer program similar to that pre-
viously described12. CDS may have some relaxation modes out of the region of data,
i.e., with relaxation times τ j much below 1/ωmax and/or much above 1/ωmin, where ωmin

and ωmax are the minimum and maximum data frequencies, respectively. The relaxation
strength gj of such a long relaxation mode represents the cumulative relaxation strength
(i.e. ∫H(τ)τ–1 dτ) of all long modes including the static mode strength, if any; these
modes cannot be resolved due to the lack of data in this region. Whether the numerical
method tends to shift long modes to the static mode or vice versa depends on data
errors in G″(ω) for lowest ω’s. Such a short relaxation mode behaves similarly with the
difference that the product gjτ j of its relaxation strength and relaxation time now repre-
sents the cumulative value of this product (i.e. ∫H(τ) dτ) for all short modes and a
tendency to shift these modes to zero relaxation time depends on data errors in G′(ω)
for largest ω’s. The zero relaxation time is unacceptable on physical grounds. However,
when τ j of a mode converges to zero, I keep it, since a restriction to a minimum τ is
always ambiguous and anyway such a mode does not represent an actual relaxation
time, but only the cumulative gjτ j value.

RESULTS AND DISCUSSION

For data simulated by Honerkamp and Weese5, CDS, identical to the discrete spectrum
with lowest standard deviation, is shown in Fig. 1 together with the model spectrum.
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An agreement of the envelope of the CDS peaks with the model spectrum is apparent.
The very weak mode at τ = 165 represents the weak margin of the model spectrum just
below τ = 100. For its suppressing, the number of modes should be lowered to as little
as four with a standard deviation increase greater than 20%, far beyond the limit statis-
tically allowed. The sensitivity of the Lorentz transform inversion in the long-time re-
gion is governed by the data accuracy in the low ω region, in which both G′  and G″ are

–4      –∞                        –3                                   –2                                   –1  ∞log τ
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FIG. 2
Discrete relaxation time (τ in s) spectra calculated from dynamic moduli data of a polybutadiene
melt5. Thick vertical lines: CDS; thin vertical lines: the discrete spectrum with lowest standard devia-
tion. (The modes the relaxation times of which converged to zero are shown at τ equal to one-fifth
of the reciprocal highest experimental frequency and with an arrow attached to indicate that τ con-
verged to zero.)
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FIG. 1
The relaxation time spectrum obtained by the least-squares method (the complete discrete spectrum – CDS)
from simulated data5. ■  Model distribution; vertical lines: CDS
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small. When data are of a comparable relative accuracy in G* as usual, they allow
resolving weak modes in the long-time region. When in another region of the spectrum
such a weak mode occasionally appears, it is absorbed by adjacent modes when switch-
ing to the discrete spectrum with lowest standard deviation, which is caused by large G′
values at not low ω.

CDS (heavy lines) and the discrete spectrum with lowest standard deviation (weak
lines – one mode less) obtained from experimental data of a polybutadiene melt5 are
shown in Fig. 2. A very weak static mode (349 and 363 Pa) is present in both discrete
spectra; its suppression again increases the standard deviation by almost 20%. This
mode is well separated from the other part of the spectrum since 1/ωmin is about 0.4 s.
It is not necessarily quite static; however, its relaxation time certainly exceeds a few
seconds. Zero relaxation time modes are shown at τ0 =0.2/ωmax; the τ → 0 limits of the
τg product divided by τ0 are shown on the ordinate and attached weak lines with arrows
show the ratio increase when τ0 is further lowered.

CDS and discrete spectra with lowest standard deviation for smoothed data of six
molten polystyrene samples15 are shown in Fig. 3. Again, a resolution of weak modes
at the long-time margin of spectra is observed with no such effect in other regions. To
study the effect of a data truncation, unmodified data15 for polystyrene sample 5 for
individual experimental temperatures with appropriate shift factors and their collection
are used in Fig. 4. The fact that the mode at largest τ represents the collective strength
of all long-time modes beyond the data region is traced.

Since interpretation of CDS or of the discrete spectrum with lowest standard devia-
tion may sometimes be difficult, let me discuss some alternatives to this. Concerning
Tikhonov regularization3, serious artifact structures revealed sometimes in the Laplace
transform inversion8,19 are expected to persist in the Lorentz case, since Lorentz trans-
form may be obtained by Fourier transformation of Laplace transform and through
Fourier transformation, which is orthogonal, no information is lost. For example, one
has to suspect that the side band at 0.001 s in Fig. 2a of ref.5 is artifact due to the
regularization method and an H(τ) similar to the power law one (H(τ) = aτb for τ ≤ τ0

and H(τ) = 0 elsewhere) may be compatible with the experimental data as well; discrete
spectra say nothing about this problem. Hence, a regularization method does not seem
best for improving discrete spectra. However, as stated by Provencher19, “at least as a
stopgap measure it can still be useful”. From methods not assuming a particular form of
the spectrum, the peak-constraining method13,19 (i.e., that restricting the number of
maxima in the spectrum to a small number) seems most promising. It is able to resolve
the above ambiguity in the interpretation of the spectrum5 of the polybutadiene melt. A
spectrum consisting of one band having a single maximum and of a very weak static
mode is fully compatible20 with the experimental data5 (the IR value of 0.71). Suppress-
ing the static mode yields20 only a slight incompatibility at lowest ω (IR of 2.17), which
may also be assigned to systematic errors in the experimental data or to a nonlinearity
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FIG. 3
Discrete relaxation time spectra (τ in s, g in Pa) calculated from dynamic moduli data of polystyrene
melts, the smoothed set15. + CDS; ❐  the discrete spectrum with lowest standard deviation. (For ad-
ditional explanation, see Fig. 2.) Polystyrene sample numbers in ref.15: a 1, b 2, c 3, d 4, e 5, f 6
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of the viscoelastic behaviour. The side band5 at 0.001 s is unnecessary for a compati-
bility with the experiment anyway20. This method was shown to yield unattractive13 or
unaesthetic19 histogram bin edges; however, it may serve13 as a good tool for an esti-
mate of a particular form of the spectrum with some parameters being refined later.
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FIG. 4
Discrete relaxation time spectra (τ in s, g in Pa) calculated from dynamic moduli data of polystyrene
sample 5, the unmodified set15, with appropriate shift factors. + CDS; ❐  the discrete spectrum with
lowest standard deviation. (For additional explanation, see Fig. 2.) a A collection of all experimental
temperatures, b T = 150 °C, c T = 160 °C, d T = 180 °C, e T = 200 °C, f T = 220 °C, g T = 240 °C

Discrete Relaxation Time Spectra 1823

Collect. Czech. Chem. Commun. (Vol. 60) (1995)



A power law form is frequently used in analyzing dynamic moduli data (see e.g.14). The
generalized exponential (GEX) distribution21

 H(τ) = | s | (τ/τ0)u exp (−(τ/τ0)s)/Γ(u/s) (4)

is more flexible than that power law, since its position, width, and asymmetry may vary
independently. It seems universal for unimodal structureless distributions22 and as such
most suitable for a description of relaxation spectra; a superposition of two or a few
GEX functions may be used when one is insufficient. The GEX distribution was used
in estimating the polydispersity index of narrow molecular-weight distributions from
DLS data23. The power law form is a limiting case of GEX with the parameter s going
to plus or minus infinity. Owing to its flexibility, GEX with a large s value can be
expected to fix broadening of the power-law-form edge in the rubber-like region due to
a polydispersity discussed in refs24,14.

CONCLUSIONS

The problem of finding a relaxation time spectrum from dynamic moduli data by the
least-squares method is well-posed and yields a discrete spectrum, provided that the
data cannot be fitted exactly (i.e. without any deviation of data and calculated values)
by any spectrum. When an actual spectrum is continuous, the envelope of the result
roughly agrees with it, even though difficulties in interpreting results are often en-
countered. The result is suitable for considering the consistency of data and compati-
bility of another spectrum with the data. As an improvement to this approach, methods
restricting the number of maxima in the spectrum or using a particular form of the
spectrum with parameters adjusted should be preferred to penalizing methods, since the
latter suffer from serious drawbacks.

APPENDIX

We deal with the integral equation

f(ω) = ∫ 
0

∞

K(ω,τ)g(τ) dτ (A1)

for a non-negative function g(τ) when at n distinct ωi values data values fi = f(ωi) are
given. Setting Ki(τ) = K(ωi,τ), we have

fi = ∫ 
0

∞

Ki(τ)g(τ) dτ  ,     i = 1, 2, …, n  . (A2)
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We consider the feasible set, i.e., the set of all F ≡ (f1, f2, …, fn) vectors which may be
represented by Eq. (A2). This set was considered25 when Ki(τ) functions formed a T-sys-
tem25, i.e., on the interval [0,∞] were continuous and on any set of n distinct points
from this interval were linearly independent. However, systems without T-property occa-
sionally appear in practice (e.g., one datum of the storage modulus at ω1 and one datum
of the loss modulus at ω2 < ω1/3). Hence, a consideration of a more general case is
desirable.

Let us start from a very general case assuming only that the integrals in Eq. (A2)
exist in Lebesgue sense and are finite. When Ki(τ) functions are linearly dependent
(save for a τ set of zero measure), one fi may be calculated from the others and we may
consider a problem with n – 1 values fi. The feasible set is convex since with any F1

and F2 within the set and with 0 < λ < 1 also λF1 + (1 – λ)F2 is within the set. If the
boundary of the feasible set contains a nonzero F0 and also –F0, then, due to the con-
vexity, with every interior F and any λ also F + λF0 is interior and one of the fi

components may be omitted in considering whether a vector is interior. If not, a linear
transformation bringing components of any feasible vector to non-negative values
exists. The non-negativity of transformed Ki(τ) functions follows. We normalize the
transformed Ki(τ) functions to the unity i-sum when the sum is nonzero and replace

g(τ) by g(τ) ∑ 
i=1

n

Ki(τ). Integrals in Eq. (A2) exist if and only if the replaced g(τ) function

is Lebesgue-integrable with a finite integral.
For considering the feasible set further, we assume that Ki(τ) are non-negative, li-

nearly independent, and with an i-sum normalized to unity when the sum is nonzero (in

fact, it is sufficient to assume that Ki(τ) are linearly independent and ∑ 
i=1

n

| Ki(τ) |, when

nonzero, is positively downbound and upbound); g(τ) is assumed to be Lebesgue-inte-
grable with a finite integral. According to the previous paragraph, no loss of generality
yields.

Theorem 1. When no τ interval of a nonzero length exists on which, exempt a τ set

of zero measure, ∑ 
i=1

n

Ki(τ) > 0 and Ki(τ) are linearly dependent (which is met, e.g., when

Ki(τ), in addition to the overall linear independence, are analytical in terms of the the-
ory of the functions of the complex variable), the feasible set is zero vector plus the
interior of the set representable by

fi = ∑ 
j=1

r

uijgj  ,      i = 1, 2,…, n  , (A3)
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where gj are positive, Uj ≡ (uij, u2j,…, unj) nonzero, r finite, and in every neighbourhood
of each of the Uj vectors, vectors 



Ki(τ)




 ≡ (K1(τ), K2(τ), …, Kn(τ))1 for a τ set of a nonzero

measure exist. When such an interval exists, some of nonzero vectors in the boundary
of the set representable by Eq. (A3) may also be feasible.

When g(τ) = 0 holds outside the τ set for which {Ki(τ)} is within a neighbourhood

small enough of a Uj and when ∫ g(τ) dτ = 1, Eq. (A2) represents a vector arbitrarily

close to Uj. The set of {Ki(τ)} vectors (save for a τ set of zero measure) may be covered
by a finite set of disjoint subsets of neighbourhoods small enough of some Uj vectors.
Replacing in every above subset the {Ki(τ)} vector by the above Uj vector and integrat-
ing g(τ) over the subset yields an (A3) representation of a vector arbitrarily close to the
vector represented by Eq. (A2). The coincidence of the interiors of the feasible set and
of the set representable by Eq. (A3) follows by standard methods. When n linearly
independent Uj vectors are found such that, taking any neighbourhood of any of these

vectors, ∫ g(τ) dτ > 0 holds when the integral is taken over the τ set where {Ki(τ)} is in

the neighbourhood, Eq. (A2) represents an interior vector. When such Uj vectors cannot
be found for a nonzero (on a τ set of a nonzero measure) g(τ) function, a τ interval of a

nonzero length exists where, save for a τ set of zero measure, ∑ 
i=1

n

Ki(τ) > 0 and Ki(τ) are

linearly dependent. The feasible set of the system n = 2, K1(τ) = (τ + 1 − | τ − 1 | )/4 ,

K2(τ) = 1 − K1(τ) is an example where the boundary vectors f1 = f2 ≥ 0 are feasible and

the boundary vectors f1 = 0, f2 > 0 are unfeasible.
Now, representations by Eq. (A3) are considered and the feasible set now means the

set representable by Eq. (A3). The set of normalized (i.e., with ∑ 
i=1

n

fi = 1) feasible vec-

tors is closed since the set of Uj vectors is closed and the Uj vectors are of the unity
i-sums, i.e., we extend the feasible set with its boundary. A vector represented by Eq. (A3)
with infinite r is also feasible since truncated r-sums are feasible and in every neigh-
bourhood of the vector some of them exist.

Condition 1. Any n distinct Uj vectors are linearly independent.
Theorem 2. A feasible vector may be represented by Eq. (A3) with linearly inde-

pendent Uj vectors that belong to the boundary of the feasible set. Representing an
interior vector in this way, any Uj vector may be required to appear, and with the
maximum possible gj value, the representation is unique when Condition 1 is met. Re-
presenting a boundary vector in this way, then r < n, and the representation is unique
when Condition 1 is met. Every boundary vector is feasible.

When a Uj in Eq. (A3) is interior, F is interior. For an interior F and a feasible F′ , the
F″  = F – aF′  vector, with the maximum a leaving F″ feasible, is boundary. For linearly
dependent Uj’s in Eq. (A3), a dependence relation may be used to remove some of them
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in such a way that a selected parent Uj is retained. When n linearly independent Uj’s
appear in Eq. (A3), F is interior. Under Condition 1, the average of two different repre-
sentations of a vector by Eq. (A3) contains at least n + 1 distinct Uj vectors.

We confine the allowed τ j values to a set of all or some of τ values for which {Ki(τ)}
is nonzero; note that disabling a τ when {Ki(τ)} is nonzero, some F vectors yet feasible
may become unfeasible. When the set of nonzero {Ki(τ)} vectors is closed, which is
met when the τ set is closed (e.g., consists of distinct closed τ intervals and/or a finite
number of isolated τ points) and Ki(τ) are continuous on it, we may set uij = Ki(τ j).
Equation (A3) then reads

fi = ∑ 
j=1

r

gjKi(τ j) ,       i = 1, 2, …, n (A4)

with positive gj’s and distinct τ j’s taken from a closed subset (the feasible τ set) of the
τ set where {Ki(τ)} is nonzero. Condition 1 is restated as follows:

Condition 2. For any n distinct feasible τ j’s, {Ki(τj)} vectors are linearly independent.
Theorem 3. When Condition 2 holds and Ki(τ) are continuous on the feasible τ set, a

vector F in the boundary of the feasible set is uniquely represented by Eq. (A4) with
r + s < n, where s is the number of τj’s representing F and being inside the feasible τ
set (i.e., inside a τ interval belonging to this set).

Theorem 4. Suppose Condition 2 and the continuity of Ki(τ) hold on the whole inter-
val [τmin,τmax], where τmin and τmax are the minimum and maximum feasible τ’s, i.e.,
including unfeasible τ regions. Then an F is in the boundary of the feasible set if and
only if it is represented by Eq. (A4) with r + s + t < n, where t is the number of clusters
of adjacent τj′s representing F that contain neither τmin nor τmax and contain an odd
number of members; for s see Theorem 3. A cluster of adjacent τ′ s with a property is a
set of τ’s having the property and being in the boundary of the feasible τ set (e.g., at an
endpoint of a feasible τ interval or at an isolated feasible τ point) so that all feasible τ’s
between the minimum τ and the maximum τ of the cluster belong to the cluster and no
feasible τ with the property may be added without violating this; a cluster may also
consist of a single τ. Note that t = 0 when the feasible τ set is a single closed interval.

Conditions of Theorem 4 mean that either {Ki(τ)} or a system obtained by an odd
permutation of Ki(τ) functions is a T-system. When the feasible τ set is a single closed
τ interval, Theorem 4 is given by Theorem 2.1 in Chap. II of ref.25, and for a discrete
feasible τ set, by Theorem 4.2 in Chap. VII of ref.25. The general validity of Theorem 4 and
the validity of Theorem 3 may be shown by methods used25 in the above two particular
cases.

When data form an unfeasible F vector, we search a least-squares solution, i.e., a
feasible vector F′ which minimizes a norm of F′  – F, the norm being a (weighted) sum
of squared elements of F′  – F or a positively definite quadratic form of the elements
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when a complete variance matrix of data is known or assumed. F′ , if it exists, is a
boundary vector of the feasible set; due to the convexity, the boundary contains a single
vector closest to F in the least-squares sense. Using Theorems 1–3 we obtain:

Theorem 5. Suppose, that on every τ interval of a nonzero length where ∑ 
i=1

n

Ki(τ) > 0

(save for a τ set of zero measure), the Ki(τ) functions are linearly independent even
when any τ set of zero measure is exempt from the interval. Then assuming that the
data vector is not exactly representable by Eq. (A2), no least-squares solution of Eq. (A2)
exists among ordinary g(τ) functions except the solution g(τ) = 0 for an unpractical
case when among representable vectors zero vector is closest to the data vector (i.e.,
any least-squares solution is of a discrete form). A least-squares solution of Eq. (A3)
always exists. A least-squares solution of Eq. (A4) exists when nonzero {Ki(τ)} vectors
form a closed set. The solution of Eq. (A3) or (A4) is unique when Condition 1 or 2
holds and the data vector is not representable exactly.

Theorem 6. When a data vector cannot be represented exactly by Eq. (A4) and, on a
closed feasible τ set, Ki(τ) functions are continuous and Condition 2 holds, the problem
of finding a least-squares solution of Eq. (A4) is well-posed in terms of ref.3, p. 16,
provided a change in r is considered as continuous when realized by limiting some of
gj’s to zero and/or some group(s) of τ j’s to common limit(s).

The existence and uniqueness are stated by Theorem 5. The transformation of an F
outside the feasible set to closest F′  in the boundary of the set is continuous since, due
to the convexity, it cannot increase the norm of the difference of two outside vectors.
Since the transformation to F′ from such gj’s and τ j’s that yield an F′ in the boundary
of the feasible set is mutually unique by Theorem 3 and continuous when a change in r
is considered as in Theorem 6, its inverse, the transformation from F′  to (gj,τ j), is also
continuous. Hence, the transformation from F to (gj,τj), being composed of two con-
tinuous transformations, is continuous as well. This proves the stability.

With the Lorentz transform inversion, we consider n pairs of G′(ωi) and G″(ωi) data
at a set of n distinct nonzero finite ωi. For the respective determinant with 2n values of
τ j, we obtain

D = 



 

ωi
2τj

2

1 + ωi
2τj

2 , 
ωiτj

1 + ωi
2τj

2 




 =

= (−1)nΠ
i
 ωi

3 Π
k>i

 (ωk
2 − ωi

2)2 Π
j
 τj Π

m>j
 (τm − τj)/ Π

i,j
 (1 + ωi

2τj
2)  , (A5)

where i, k run from 1 to n and j, m from 1 to 2n when forming the determinant and the
products. We see that for a set of 2n nonzero distinct τ j’s, D is nonzero, justifying the
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linear independence of the {Ki(τ j)} vectors. A similar result is obtained when n data of
only G′(ω) or only G″(ω) and n values τj are considered. When a τ j converges to in-
finity, the respective determinant elements converge to (1,0) for every ωi and D con-
verges to a finite nonzero value when other τj’s are distinct and nonzero. Since Ki(0) = 0
for every i, τ = 0 cannot be feasible. To allow for this, we multiply the kernel with τ0/τ
for τ < τ0, then τ j’s less than τ0 are replaced by τ0 in the product over j in Eq. (A5) and
D is still nonzero; for τj < τ0 we calculate gjτj/τ0 values instead of gj values. With this
modification, Theorems 1–6 are seen to hold for the Lorentz transform inversion, the
feasible τ set being any closed subset of the closed interval [0,∞].

I am very indebted to Prof. Josef Stepan from the Faculty of Mathematics and Physics, Charles
University, Prague, for his reading Appendix and valuable comments.
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